浅谈拓扑排序(基于dfs算法)

本文介绍了如何通过深度优先搜索(DFS)算法解决拓扑排序问题。拓扑排序是针对无环有向图的任务排序,当给定n个任务和m个有序对表示任务之间的依赖关系时,我们需要找到一种排序方式。文章提供了C++代码实现,解释了关键步骤,并通过一个实例帮助理解DFS在拓扑排序中的应用。
摘要由CSDN通过智能技术生成

假设有n个任务,有m个有序对(u,v),表示任务u应该排在任务v之前,那么怎样将这些任务按照顺序排列起来呢?比如有三个有序对(1,4),(3,2),(1,3)排列起来就是1,3,2,4 。尽管还有其他可能(如1,4,3,2),但我们只需找出一种即可,注意:有些情况无法排序,如(1,2),(2,3),(3,1)。

我们把每个任务看成一个点,将每个有序对看成有向边,则形成了一个有向图,由题意可知这个有向图必须是无环的,否则无法排序。在图论中,我们把对这些节点进行排序的问题称为拓扑排序,可借用dfs算法解决该问题。

代码如下:

#include<iostream>
#include<cstring>
using namespace std;
int n,m,topo[100];       //topo数组用来储存最终形成的拓扑序列
int G[100][100];          //储存有序对信息
int c[100];                   //储存每个节点是否被访问过的信息
int t;                          
bool dfs(int u)
{
    c[u]=-1;               //该段代码的一个亮点,表示u节点正在被访问
    for(int v&#

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值